m

F Nous contacter

0

Documents  Charles, François | enregistrements trouvés : 6

O
     

-A +A

P Q

Déposez votre fichier ici pour le déplacer vers cet enregistrement.

Research talks;Algebraic and Complex Geometry;Number Theory

The classical Bertini irreducibility theorem states that if $X$ is an irreducible projective variety of dimension at least 2 over an infinite field, then $X$ has an irreducible hyperplane section. The proof does not apply in arithmetic situations, where one wants to work over the integers or a finite fields. I will discuss how to amend the theorem in these cases (joint with Bjorn Poonen over finite fields).

14N05 ; 14J70 ; 14G15

... Lire [+]

Déposez votre fichier ici pour le déplacer vers cet enregistrement.

Research talks

Given a smooth scheme $X$ over the ring of integers of a $p$-adic field, we introduce the notion of a relative Breuil-Kisin-Fargues module $M$ on $X$. Each such $M$ simultaneously encodes the data of a lisse étale sheaf, a module with flat connection, and a crystal, whose cohomologies are then intertwined by a relative form of the $A_{inf}$ cohomology introduced in "Integral $p$-adic Hodge theory" by Bhatt-M-Scholze. They are moreover closely related to other work in relative $p$-adic Hodge theory, notably Faltings small generalised representations and his relative Fontaine Lafaille theory. Joint with Takeshi Tsuji. Given a smooth scheme $X$ over the ring of integers of a $p$-adic field, we introduce the notion of a relative Breuil-Kisin-Fargues module $M$ on $X$. Each such $M$ simultaneously encodes the data of a lisse étale sheaf, a module with flat connection, and a crystal, whose cohomologies are then intertwined by a relative form of the $A_{inf}$ cohomology introduced in "Integral $p$-adic Hodge theory" by Bhatt-M-Scholze. They are moreover closely ...

14F20 ; 14F30 ; 14F40 ; 14D10 ; 14G20 ; 14G22 ; 11G25

... Lire [+]

Déposez votre fichier ici pour le déplacer vers cet enregistrement.

Research talks

We construct motives over the rational numbers associated with symmetric power moments of Kloosterman sums, and prove that their $L$-functions extend meromorphically to the complex plane and satisfy a functional equation conjectured by Broadhurst and Roberts. Although the motives in question turn out to be classical, the strategy consists in first realizing them as exponential motives and computing their Hodge numbers by means of the irregular Hodge filtration. We show that all Hodge numbers are either zero or one, which implies potential automorphicity thanks to recent results of Patrikis and Taylor. The first talk will be concerned with the arithmetic aspects and in the second one we will present the Hodge theoretic computations. Joint work with Claude Sabbah and Jeng-Daw Yu. We construct motives over the rational numbers associated with symmetric power moments of Kloosterman sums, and prove that their $L$-functions extend meromorphically to the complex plane and satisfy a functional equation conjectured by Broadhurst and Roberts. Although the motives in question turn out to be classical, the strategy consists in first realizing them as exponential motives and computing their Hodge numbers by means of the irregular ...

11L05 ; 14C30 ; 14F40 ; 32S40

... Lire [+]

Déposez votre fichier ici pour le déplacer vers cet enregistrement.

Research talks

(joint work with G. Wüstholz) Roughly, $1$-dimensional periods are the complex numbers obtained by integrating a differential form on an algebraic curve over $\bar{\mathbf{Q}}$ over a suitable domain of integration. One of the alternative characterisations is as periods of Deligne $1$-motives.
We clear up the linear relations between these numbers, proving Kontsevich's version of the period conjecture for $1$-dimensional periods. In particular, a $1$-dimensional period is shown to be algebraic if and only if it is of the form $\int_\gamma (\phi+df)$ with $\int_\gamma\phi=0$. We also get formulas for the spaces of periods of a given $1$-motive, generalising Baker's theorem on logarithms of algebraic numbers.
The proof is based on a version of Wüstholz's analytic subgroup theorem for $1$-motives.
(joint work with G. Wüstholz) Roughly, $1$-dimensional periods are the complex numbers obtained by integrating a differential form on an algebraic curve over $\bar{\mathbf{Q}}$ over a suitable domain of integration. One of the alternative characterisations is as periods of Deligne $1$-motives.
We clear up the linear relations between these numbers, proving Kontsevich's version of the period conjecture for $1$-dimensional periods. In particular, ...

14F42 ; 19E15 ; 19F27

... Lire [+]

Déposez votre fichier ici pour le déplacer vers cet enregistrement.

Research talks

​We give a geometric representation theory proof of a mild version of the Beauville-Voisin Conjecture for Hilbert schemes of K3 surfaces, namely the injectivity of the cycle map restricted to the subring of Chow generated by tautological classes. Although other geometric proofs of this result are known, our approach involves lifting formulas of Lehn and Li-Qin-Wang from cohomology to Chow, and using them to quickly solve the problem by invoking the irreducibility criteria of Virasoro algebra modules, due to Feigin-Fuchs. Joint work with Davesh Maulik. ​We give a geometric representation theory proof of a mild version of the Beauville-Voisin Conjecture for Hilbert schemes of K3 surfaces, namely the injectivity of the cycle map restricted to the subring of Chow generated by tautological classes. Although other geometric proofs of this result are known, our approach involves lifting formulas of Lehn and Li-Qin-Wang from cohomology to Chow, and using them to quickly solve the problem by invoking ...

14C15 ; 14J28 ; 32J27 ; 17B68

... Lire [+]

Déposez votre fichier ici pour le déplacer vers cet enregistrement.

Research talks

11G18 ; 14F30 ; 11F75

... Lire [+]

Z