m

F Nous contacter

0

Documents  Adamczewski, Boris | enregistrements trouvés : 24

O

-A +A

P Q

Déposez votre fichier ici pour le déplacer vers cet enregistrement.

Outreach;Mathematics Education and Popularization of Mathematics

Pascal Hubert est mathématicien, professeur au sein d'Aix-Marseille Université et directeur de la FRUMAM.
Il parle ici de son grand-père, qui lui a donné le goût des mathématiques, de ses recherches, de la richesse mathématique marseillaise, de sa collaboration avec Artur Avila (Médaille Fields 2014), etc. Artur Avila que nous avons pu contacter avant l'interview de Pascal Hubert, et qui nous a demandé de lui parler de Jean-Christophe Yoccoz...
Pascal Hubert est mathématicien, professeur au sein d'Aix-Marseille Université et directeur de la FRUMAM.
Il parle ici de son grand-père, qui lui a donné le goût des mathématiques, de ses recherches, de la richesse mathématique marseillaise, de sa collaboration avec Artur Avila (Médaille Fields 2014), etc. Artur Avila que nous avons pu contacter avant l'interview de Pascal Hubert, et qui nous a demandé de lui parler de Jean-Christophe Yoccoz...

... Lire [+]

Déposez votre fichier ici pour le déplacer vers cet enregistrement.

Research talks;Combinatorics;Number Theory

In the recent years, the nature of the generating series of walks in the quarter plane has attracted the attention of many authors in combinatorics and probability. The main questions are: are they algebraic, holonomic (solutions of linear differential equations) or at least hyperalgebraic (solutions of algebraic differential equations)? In this talk, we will show how the nature of the generating function can be approached via the study of a discrete functional equation over a curve E, of genus zero or one. In the first case, the functional equation corresponds to a so called q-difference equation and all the related generating series are differentially transcendental. For the genus one case, the dynamic of the functional equation corresponds to the addition by a given point P of the elliptic curve E. In that situation, one can relate the nature of the generating series to the fact that the point P is of torsion or not. In the recent years, the nature of the generating series of walks in the quarter plane has attracted the attention of many authors in combinatorics and probability. The main questions are: are they algebraic, holonomic (solutions of linear differential equations) or at least hyperalgebraic (solutions of algebraic differential equations)? In this talk, we will show how the nature of the generating function can be approached via the study of a ...

05A15 ; 30D05 ; 39A13 ; 12F10 ; 12H10 ; 12H05

... Lire [+]

Déposez votre fichier ici pour le déplacer vers cet enregistrement.

Research schools;Lie Theory and Generalizations

In this series of lectures, we will focus on simple Lie groups, their dense subgroups and the convolution powers of their measures. In particular, we will dicuss the following two questions.
Let G be a Lie group. Is every Borel measurable subgroup of G with maximal Hausdorff dimension equal to the group G?
Is the convolution of sufficiently many compactly supported continuous functions on G always continuously differentiable?
Even though the answer to these questions is no when G is abelian, the answer is yes when G is simple. This is a joint work with N. de Saxce. First, I will explain the history of these two questions and their interaction. Then, I will relate these questions to spectral gap properties. Finally, I will discuss these spectral gap properties.
In this series of lectures, we will focus on simple Lie groups, their dense subgroups and the convolution powers of their measures. In particular, we will dicuss the following two questions.
Let G be a Lie group. Is every Borel measurable subgroup of G with maximal Hausdorff dimension equal to the group G?
Is the convolution of sufficiently many compactly supported continuous functions on G always continuously differentiable?
Even though the ...

22E30 ; 28A78 ; 43A65

... Lire [+]

Déposez votre fichier ici pour le déplacer vers cet enregistrement.

Research talks

Any algebraic (resp. linear) relation over the field of rational functions with algebraic coefficients between given analytic functions leads by specialization to algebraic (resp. linear) relations over the field of algebraic numbers between the values of these functions. Number theorists have long been interested in proving results going in the other direction. Though the converse result is known to be false in general, Mahler’s method provides one of the few known instances where it essentially holds true. After the works of Nishioka, and more recently of Philippon, Faverjon and the speaker, the theory of Mahler functions in one variable is now rather well understood. In contrast, and despite the contributions of Mahler, Loxton and van der Poorten, Kubota, Masser, and Nishioka among others, the theory of Mahler functions in several variables remains much less developed. In this talk, I will discuss recent progresses concerning the case of regular singular systems, as well as possible applications of this theory. This is a joint work with Colin Faverjon. Any algebraic (resp. linear) relation over the field of rational functions with algebraic coefficients between given analytic functions leads by specialization to algebraic (resp. linear) relations over the field of algebraic numbers between the values of these functions. Number theorists have long been interested in proving results going in the other direction. Though the converse result is known to be false in general, Mahler’s method provides ...

11J81 ; 11J85 ; 11B85

... Lire [+]

Déposez votre fichier ici pour le déplacer vers cet enregistrement.

Research talks;Dynamical Systems and Ordinary Differential Equations;Algebraic and Complex Geometry;Number Theory

In 1978 Roger Apéry proved irrationality of zeta(3) approximating it by ratios of terms of two sequences of rational numbers both satisfying the same recurrence relation. His study of the growth of denominators in these sequences involved complicated explicit formulas for both via sums of binomial coefficients. Subsequently, Frits Beukers gave a more enlightening proof of their properties, in which zeta(3) can be seen as an entry in a monodromy matrix for a differential equation arising from a one-parametric family of K3 surfaces. In the talk I will define Apéry constants for Fuchsian differential operators and explain the generalized Frobenius method due to Golyshev and Zagier which produces an infinite sequence of Apéry constants starting from a single differential equation. I will then show a surprising property of their generating function and conclude that the Apéry constants for a geometric differential operator are periods.
This is work in progress with Spencer Bloch and Francis Brown.
In 1978 Roger Apéry proved irrationality of zeta(3) approximating it by ratios of terms of two sequences of rational numbers both satisfying the same recurrence relation. His study of the growth of denominators in these sequences involved complicated explicit formulas for both via sums of binomial coefficients. Subsequently, Frits Beukers gave a more enlightening proof of their properties, in which zeta(3) can be seen as an entry in a monodromy ...

34M35 ; 14G10 ; 11F23

... Lire [+]

Déposez votre fichier ici pour le déplacer vers cet enregistrement.

Research schools;Dynamical Systems and Ordinary Differential Equations

We will discuss old and recent results on topological and measurable dynamics of diagonal and unipotent flows on frame bundles and unit tangent bundles over hyperbolic manifolds. The first lectures will be a good introduction to the subject for young researchers.

37D40 ; 37A17 ; 37A25

... Lire [+]

Déposez votre fichier ici pour le déplacer vers cet enregistrement.

Research talks

In a recent collaboration with Pascal Autissier and Marc Hindry, we prove that up to isomorphisms, there are at most finitely many elliptic curves defined over a fixed number field, with Mordell-Weil rank and regulator bounded from above, and rank at least 4.

11G50 ; 14G40

... Lire [+]

Déposez votre fichier ici pour le déplacer vers cet enregistrement.

Research schools;Dynamical Systems and Ordinary Differential Equations;Number Theory

In this talk, we will prove the projective equidistribution of integral representations by quadratic norm forms in positive characteristic, with error terms, and deduce asymptotic counting results of these representations. We use the ergodic theory of lattice actions on Bruhat-Tits trees, and in particular the exponential decay of correlation of the geodesic flow on trees for Hölder variables coming from symbolic dynamics techniques.

20E08 ; 11J61 ; 37A25 ; 20G25 ; 37D40

... Lire [+]

Déposez votre fichier ici pour le déplacer vers cet enregistrement.

Research talks;Combinatorics;Number Theory

In the mid-90’s, generalising a theorem of Jouanolou, Hrushovski proved that if a D-variety over the constant field C has no non-constant D-rational functions to C, then it has only finitely many D-subvarieties of codimension one. This theorem has analogues in other geometric contexts where model theory plays a role: in complex analytic geometry where it is an old theorem of Krasnov, in algebraic dynamics where it is a theorem of Bell-Rogalski-Sierra, and in meromorphic dynamics where it is a theorem of Cantat. I will report on work-in-progress with Jason Bell and Adam Topaz toward generalising and unifying these statements. In the mid-90’s, generalising a theorem of Jouanolou, Hrushovski proved that if a D-variety over the constant field C has no non-constant D-rational functions to C, then it has only finitely many D-subvarieties of codimension one. This theorem has analogues in other geometric contexts where model theory plays a role: in complex analytic geometry where it is an old theorem of Krasnov, in algebraic dynamics where it is a theorem of Bell-R...

03C60 ; 12H05 ; 12L12

... Lire [+]

Déposez votre fichier ici pour le déplacer vers cet enregistrement.

Research talks;Algebra;Combinatorics

Excursions are walks which start and end at prescribed locations. In this talk we consider the counting sequences of excursions, more precisely, the functional equations their generating functions satisfy. We focus on two sources of excursion problems: walks defined by their allowable steps, taken on integer lattices restricted to cones; and walks on Cayley graphs with a given set of generators. The latter is related to the cogrowth problems of groups. In both cases we are interested in relating the nature of the generating function (i.e. rational, algebraic, D-finite, etc.) and combinatorial properties of the models. We are also interested in the relation between the excursions, and less restricted families of walks.
Please note: A few corrections were made to the PDF file of this talk, the new version is available at the bottom of the page.
Excursions are walks which start and end at prescribed locations. In this talk we consider the counting sequences of excursions, more precisely, the functional equations their generating functions satisfy. We focus on two sources of excursion problems: walks defined by their allowable steps, taken on integer lattices restricted to cones; and walks on Cayley graphs with a given set of generators. The latter is related to the cogrowth problems of ...

05A15 ; 05C25 ; 60G50 ; 20F05

... Lire [+]

Déposez votre fichier ici pour le déplacer vers cet enregistrement.

Research talks

We will present work in progress, joint with Hexi Ye, towards a conjecture of Bogomolov, Fu, and Tschinkel asserting uniform bounds for common torsion points of nonisomorphic elliptic curves. We introduce a general approach towards uniform unlikely intersection bounds based on an adelic height pairing, and discuss the utilization of this approach for uniform bounds on common preperiodic points of dynamical systems, including torsion points of elliptic curves. We will present work in progress, joint with Hexi Ye, towards a conjecture of Bogomolov, Fu, and Tschinkel asserting uniform bounds for common torsion points of nonisomorphic elliptic curves. We introduce a general approach towards uniform unlikely intersection bounds based on an adelic height pairing, and discuss the utilization of this approach for uniform bounds on common preperiodic points of dynamical systems, including torsion points of ...

14G05 ; 11G50 ; 11G05

... Lire [+]

Déposez votre fichier ici pour le déplacer vers cet enregistrement.

Research schools;Dynamical Systems and Ordinary Differential Equations;Number Theory

Optimal results on the improvements to Dirichlet's Theorem are obtained in the one-dimensional case. For simultaneous approximation the problem is open. I will describe reduction of the problem to dynamics both in one-dimensional case (via continued fractions) and for higher dimensions (via diagonal flows on the space of lattices). If time allows I'll mention an inhomogeneous version which is easier than the homogeneous one. Joint work with Nick Wadleigh. Optimal results on the improvements to Dirichlet's Theorem are obtained in the one-dimensional case. For simultaneous approximation the problem is open. I will describe reduction of the problem to dynamics both in one-dimensional case (via continued fractions) and for higher dimensions (via diagonal flows on the space of lattices). If time allows I'll mention an inhomogeneous version which is easier than the homogeneous one. Joint work with Nick ...

22F30 ; 11J04 ; 11J70 ; 37A17

... Lire [+]

Déposez votre fichier ici pour le déplacer vers cet enregistrement.

Research schools;Dynamical Systems and Ordinary Differential Equations;Number Theory

I will discuss approaches to several problems concerning values of linear and quadratic forms using the ergodic theory of group actions on the space of unimodular lattices, and more generally, on homogeneous spaces of semisimple Lie groups.

37A17 ; 11K60 ; 22F30

... Lire [+]

Déposez votre fichier ici pour le déplacer vers cet enregistrement.

Research talks

It goes back to Lagrange that a real quadratic irrational has always a periodic continued fraction. Starting from decades ago, several authors proposed different definitions of a $p$-adic continued fraction, and the definition depends on the chosen system of residues mod $p$. It turns out that the theory of p-adic continued fractions has many differences with respect to the real case; in particular, no analogue of Lagranges theorem holds, and the problem of deciding whether the continued fraction is periodic or not seemed to be not known until now. In recent work with F. Veneziano and U. Zannier we investigated the expansion of quadratic irrationals, for the $p$-adic continued fractions introduced by Ruban, giving an effective criterion to establish the possible periodicity of the expansion. This criterion, somewhat surprisingly, depends on the ‘real’ value of the $p$-adic continued fraction. It goes back to Lagrange that a real quadratic irrational has always a periodic continued fraction. Starting from decades ago, several authors proposed different definitions of a $p$-adic continued fraction, and the definition depends on the chosen system of residues mod $p$. It turns out that the theory of p-adic continued fractions has many differences with respect to the real case; in particular, no analogue of Lagranges theorem holds, and ...

11J70 ; 11D88 ; 11Y16

... Lire [+]

Déposez votre fichier ici pour le déplacer vers cet enregistrement.

Research talks;Number Theory

In this lecture I discuss joint work with Eric Delaygue on supercongruences for certain truncated hypergeometric functions. There will also be a discussion of the hypergeometric motives that underlie these congruences.

33C70 ; 11A07 ; 33C20 ; 33C05

... Lire [+]

Déposez votre fichier ici pour le déplacer vers cet enregistrement.

Research schools;Combinatorics;Dynamical Systems and Ordinary Differential Equations

* The early results of Ramsey theory :
Hilbert's irreducibility theorem, Dickson-Schur work on Fermat's equation over finite fields, van der Waerden's theorem, Ramsey's theoremand its rediscovery by Erdos and Szekeres.

* Three main principles of Ramsey theory :
First principle: Complete disorder is impossible. Second principle: Behind every 'Partition' result there is a notion of largeness which is responsible for a 'Density' enhancement of this result. Third principle: The sought-after configurations which are always to be found in large sets are abundant.

* Furstenberg's Dynamical approach :
Partition Ramsey theory and topological dynamics Dynamical versions of van der Waerden's theorem, Hindman's theorem and Graham-Rothschild-Spencer's geometric Ramsey.
Density Ramsey theory and Furstenberg's correspondence principle Furstenberg's correspondence principle. Ergodic Szemeredi's theorem. Polynomial Szemeredi theorem. Density version of the Hales-Jewett theorem.

* Stone-Cech compactifications and Hindman's theorem :
Topological algebra in Stone-Cech compactifications. Proof of Hind-man's theorem via Poincare recurrence theorem for ultrafilters.

* IP sets and ergodic Ramsey theory :
Applications of IP sets and idempotent ultrafilters to ergodic-theoretical multiple recurrence and to density Ramsey theory. IP-polynomial Szemeredi theorem.

* Open problems and conjectures

If time permits:
* The nilpotent connection,
* Ergodic Ramsey theory and amenable groups
* The early results of Ramsey theory :
Hilbert's irreducibility theorem, Dickson-Schur work on Fermat's equation over finite fields, van der Waerden's theorem, Ramsey's theoremand its rediscovery by Erdos and Szekeres.

* Three main principles of Ramsey theory :
First principle: Complete disorder is impossible. Second principle: Behind every 'Partition' result there is a notion of largeness which is responsible for a 'Density' enhancement of ...

05D10 ; 37Axx ; 12D10 ; 11D41 ; 54D80 ; 37B20

... Lire [+]

Déposez votre fichier ici pour le déplacer vers cet enregistrement.

Research schools;Combinatorics;Dynamical Systems and Ordinary Differential Equations

* The early results of Ramsey theory :
Hilbert's irreducibility theorem, Dickson-Schur work on Fermat's equation over finite fields, van der Waerden's theorem, Ramsey's theoremand its rediscovery by Erdos and Szekeres.

* Three main principles of Ramsey theory :
First principle: Complete disorder is impossible. Second principle: Behind every 'Partition' result there is a notion of largeness which is responsible for a 'Density' enhancement of this result. Third principle: The sought-after configurations which are always to be found in large sets are abundant.

* Furstenberg's Dynamical approach :
Partition Ramsey theory and topological dynamics Dynamical versions of van der Waerden's theorem, Hindman's theorem and Graham-Rothschild-Spencer's geometric Ramsey.
Density Ramsey theory and Furstenberg's correspondence principle Furstenberg's correspondence principle. Ergodic Szemeredi's theorem. Polynomial Szemeredi theorem. Density version of the Hales-Jewett theorem.

* Stone-Cech compactifications and Hindman's theorem :
Topological algebra in Stone-Cech compactifications. Proof of Hind-man's theorem via Poincare recurrence theorem for ultrafilters.

* IP sets and ergodic Ramsey theory :
Applications of IP sets and idempotent ultrafilters to ergodic-theoretical multiple recurrence and to density Ramsey theory. IP-polynomial Szemeredi theorem.

* Open problems and conjectures

If time permits:
* The nilpotent connection,
* Ergodic Ramsey theory and amenable groups
* The early results of Ramsey theory :
Hilbert's irreducibility theorem, Dickson-Schur work on Fermat's equation over finite fields, van der Waerden's theorem, Ramsey's theoremand its rediscovery by Erdos and Szekeres.

* Three main principles of Ramsey theory :
First principle: Complete disorder is impossible. Second principle: Behind every 'Partition' result there is a notion of largeness which is responsible for a 'Density' enhancement of ...

05D10 ; 37Axx ; 12D10 ; 11D41 ; 54D80 ; 37B20

... Lire [+]

Déposez votre fichier ici pour le déplacer vers cet enregistrement.

Research schools;Combinatorics;Dynamical Systems and Ordinary Differential Equations

* The early results of Ramsey theory :
Hilbert's irreducibility theorem, Dickson-Schur work on Fermat's equation over finite fields, van der Waerden's theorem, Ramsey's theoremand its rediscovery by Erdos and Szekeres.

* Three main principles of Ramsey theory :
First principle: Complete disorder is impossible. Second principle: Behind every 'Partition' result there is a notion of largeness which is responsible for a 'Density' enhancement of this result. Third principle: The sought-after configurations which are always to be found in large sets are abundant.

* Furstenberg's Dynamical approach :
Partition Ramsey theory and topological dynamics Dynamical versions of van der Waerden's theorem, Hindman's theorem and Graham-Rothschild-Spencer's geometric Ramsey.
Density Ramsey theory and Furstenberg's correspondence principle Furstenberg's correspondence principle. Ergodic Szemeredi's theorem. Polynomial Szemeredi theorem. Density version of the Hales-Jewett theorem.

* Stone-Cech compactifications and Hindman's theorem :
Topological algebra in Stone-Cech compactifications. Proof of Hind-man's theorem via Poincare recurrence theorem for ultrafilters.

* IP sets and ergodic Ramsey theory :
Applications of IP sets and idempotent ultrafilters to ergodic-theoretical multiple recurrence and to density Ramsey theory. IP-polynomial Szemeredi theorem.

* Open problems and conjectures

If time permits:
* The nilpotent connection,
* Ergodic Ramsey theory and amenable groups
* The early results of Ramsey theory :
Hilbert's irreducibility theorem, Dickson-Schur work on Fermat's equation over finite fields, van der Waerden's theorem, Ramsey's theoremand its rediscovery by Erdos and Szekeres.

* Three main principles of Ramsey theory :
First principle: Complete disorder is impossible. Second principle: Behind every 'Partition' result there is a notion of largeness which is responsible for a 'Density' enhancement of ...

05D10 ; 37Axx ; 12D10 ; 11D41 ; 54D80 ; 37B20

... Lire [+]

Déposez votre fichier ici pour le déplacer vers cet enregistrement.

Research schools;Combinatorics;Dynamical Systems and Ordinary Differential Equations

* The early results of Ramsey theory :
Hilbert's irreducibility theorem, Dickson-Schur work on Fermat's equation over finite fields, van der Waerden's theorem, Ramsey's theoremand its rediscovery by Erdos and Szekeres.

* Three main principles of Ramsey theory :
First principle: Complete disorder is impossible. Second principle: Behind every 'Partition' result there is a notion of largeness which is responsible for a 'Density' enhancement of this result. Third principle: The sought-after configurations which are always to be found in large sets are abundant.

* Furstenberg's Dynamical approach :
Partition Ramsey theory and topological dynamics Dynamical versions of van der Waerden's theorem, Hindman's theorem and Graham-Rothschild-Spencer's geometric Ramsey.
Density Ramsey theory and Furstenberg's correspondence principle Furstenberg's correspondence principle. Ergodic Szemeredi's theorem. Polynomial Szemeredi theorem. Density version of the Hales-Jewett theorem.

* Stone-Cech compactifications and Hindman's theorem :
Topological algebra in Stone-Cech compactifications. Proof of Hind-man's theorem via Poincare recurrence theorem for ultrafilters.

* IP sets and ergodic Ramsey theory :
Applications of IP sets and idempotent ultrafilters to ergodic-theoretical multiple recurrence and to density Ramsey theory. IP-polynomial Szemeredi theorem.

* Open problems and conjectures

If time permits:
* The nilpotent connection,
* Ergodic Ramsey theory and amenable groups
* The early results of Ramsey theory :
Hilbert's irreducibility theorem, Dickson-Schur work on Fermat's equation over finite fields, van der Waerden's theorem, Ramsey's theoremand its rediscovery by Erdos and Szekeres.

* Three main principles of Ramsey theory :
First principle: Complete disorder is impossible. Second principle: Behind every 'Partition' result there is a notion of largeness which is responsible for a 'Density' enhancement of ...

05D10 ; 37Axx ; 12D10 ; 11D41 ; 54D80 ; 37B20

... Lire [+]

Déposez votre fichier ici pour le déplacer vers cet enregistrement.

Research schools;Combinatorics;Dynamical Systems and Ordinary Differential Equations

* The early results of Ramsey theory :
Hilbert's irreducibility theorem, Dickson-Schur work on Fermat's equation over finite fields, van der Waerden's theorem, Ramsey's theoremand its rediscovery by Erdos and Szekeres.

* Three main principles of Ramsey theory :
First principle: Complete disorder is impossible. Second principle: Behind every 'Partition' result there is a notion of largeness which is responsible for a 'Density' enhancement of this result. Third principle: The sought-after configurations which are always to be found in large sets are abundant.

* Furstenberg's Dynamical approach :
Partition Ramsey theory and topological dynamics Dynamical versions of van der Waerden's theorem, Hindman's theorem and Graham-Rothschild-Spencer's geometric Ramsey.
Density Ramsey theory and Furstenberg's correspondence principle Furstenberg's correspondence principle. Ergodic Szemeredi's theorem. Polynomial Szemeredi theorem. Density version of the Hales-Jewett theorem.

* Stone-Cech compactifications and Hindman's theorem :
Topological algebra in Stone-Cech compactifications. Proof of Hind-man's theorem via Poincare recurrence theorem for ultrafilters.

* IP sets and ergodic Ramsey theory :
Applications of IP sets and idempotent ultrafilters to ergodic-theoretical multiple recurrence and to density Ramsey theory. IP-polynomial Szemeredi theorem.

* Open problems and conjectures

If time permits:
* The nilpotent connection,
* Ergodic Ramsey theory and amenable groups
* The early results of Ramsey theory :
Hilbert's irreducibility theorem, Dickson-Schur work on Fermat's equation over finite fields, van der Waerden's theorem, Ramsey's theoremand its rediscovery by Erdos and Szekeres.

* Three main principles of Ramsey theory :
First principle: Complete disorder is impossible. Second principle: Behind every 'Partition' result there is a notion of largeness which is responsible for a 'Density' enhancement of ...

05D10 ; 37Axx ; 12D10 ; 11D41 ; 54D80 ; 37B20

... Lire [+]

Z