m

Documents  03D78 | enregistrements trouvés : 1

O
     

-A +A

P Q

Déposez votre fichier ici pour le déplacer vers cet enregistrement.

Research talks;Computer Science;Logic and Foundations

Carleson's Theorem states that for $1 < p < \infty$, the Fourier series of a function $f$ in $L^p[-\pi,\pi]$ converges to $f$ almost everywhere. We consider this theorem in the context of computable analysis and show the following two results.
(1) For a computable $p > 1$, if $f$ is a computable vector in $L^p[?\pi,\pi]$ and $t_0 \in [-\pi,\pi]$ is Schnorr random, then the Fourier series for $f$ converges at $t_0$.
(2) If $t_0 \in [-\pi,\pi]$ is not Schnorr random, then there is a computable function $f : [-\pi,\pi] \rightarrow \mathbb{C}$ whose Fourier series diverges at $t_0$.
This is joint work with Timothy H. McNicholl, and Jason Rute.
Carleson's Theorem states that for $1 < p < \infty$, the Fourier series of a function $f$ in $L^p[-\pi,\pi]$ converges to $f$ almost everywhere. We consider this theorem in the context of computable analysis and show the following two results.
(1) For a computable $p > 1$, if $f$ is a computable vector in $L^p[?\pi,\pi]$ and $t_0 \in [-\pi,\pi]$ is Schnorr random, then the Fourier series for $f$ converges at $t_0$.
(2) If $t_0 \in [-\pi,\pi]$ i...

03D32 ; 42A20 ; 03D78 ; 68Q30

... Lire [+]

Z