m

F Nous contacter

0

Documents  35Q86 | enregistrements trouvés : 20

O
     

-A +A

P Q

Déposez votre fichier ici pour le déplacer vers cet enregistrement.

Research schools

In these lectures, we will focus on the analysis of oceanographic models. These models involve several small parameters: Mach number, Froude number, Rossby number... We will present a hierarchy of models, and explain how they can formally be derived from one another. We will also present different mathematical tools to address the asymptotic analysis of these models (filtering methods, boundary layer techniques).

86A05 ; 34E13 ; 35Q30 ; 35Q86 ; 35Jxx

... Lire [+]

Déposez votre fichier ici pour le déplacer vers cet enregistrement.

Research schools

In these lectures, we will focus on the analysis of oceanographic models. These models involve several small parameters: Mach number, Froude number, Rossby number... We will present a hierarchy of models, and explain how they can formally be derived from one another. We will also present different mathematical tools to address the asymptotic analysis of these models (filtering methods, boundary layer techniques).

86A05 ; 34E13 ; 35Q30 ; 35Q86 ; 35Jxx

... Lire [+]

Déposez votre fichier ici pour le déplacer vers cet enregistrement.

Research schools

In these lectures, we will focus on the analysis of oceanographic models. These models involve several small parameters: Mach number, Froude number, Rossby number... We will present a hierarchy of models, and explain how they can formally be derived from one another. We will also present different mathematical tools to address the asymptotic analysis of these models (filtering methods, boundary layer techniques).

86A05 ; 34E13 ; 35Q30 ; 35Q86 ; 35Jxx

... Lire [+]

Déposez votre fichier ici pour le déplacer vers cet enregistrement.

Research schools

A good understanding of waves in shallow water, typically in coastal regions, is important for several environmental and societal issues: submersion risks, protection of harbors, erosion, offshore structures, wave energies, etc.

The goal of this serie of lectures is to show how efficient asymptotic models can be derived from the full fluid equations (Navier-Stokes and Euler) and to point out several modelling, numerical and mathematical challenges that one still has to understand in order to describe correctly and efficiently such complex phenomena as wave breaking, overtopping, wave-structures interactions, etc.

I Derivation of several shallow water models

We will show how to derive several shallow water models (nonlinear shallow water equations, Boussinesq and Serre-Green-Naghdi systems) from the free surface Euler equations. We will consider first the case of an idealized configuration where no breaking waves are involved, where the water height does not vanish (no beach!), and where the flow is irrotational - this is the only configuration for which a rigorous justification of the asymptotic models can be justified.

II Brief analysis of these models.

We will briefly comment the mathematical structure of these equations, with a particular focus on the properties that are of interest for their numerical implementation. We will also discuss how these models behave in when the water height vanishes, since they are typically used in such configurations (see the lecture by P. Bonneton).

III Vorticity and turbulent effects.

We will propose a generalization of the derivation of the main shallow water models in the presence of vorticity, and show that the standard irrotational shallow water models must be coupled with an equation for a ”turbulent” tensor. We will also make the link with a modelling of wave breaking proposed by Gavrilyuk and Richard in which wave breaking is taken into account as a source term in this additional equation.

IV Floating objects.

This last section will be devoted to the description of a new approach to describe the interaction of waves in shallow water with floating objects, which leads to several interesting mathematical and numerical issues.
A good understanding of waves in shallow water, typically in coastal regions, is important for several environmental and societal issues: submersion risks, protection of harbors, erosion, offshore structures, wave energies, etc.

The goal of this serie of lectures is to show how efficient asymptotic models can be derived from the full fluid equations (Navier-Stokes and Euler) and to point out several modelling, numerical and mathematical ...

35Q86 ; 86A05 ; 35-XX

... Lire [+]

Déposez votre fichier ici pour le déplacer vers cet enregistrement.

Research schools

A good understanding of waves in shallow water, typically in coastal regions, is important for several environmental and societal issues: submersion risks, protection of harbors, erosion, offshore structures, wave energies, etc.

The goal of this serie of lectures is to show how efficient asymptotic models can be derived from the full fluid equations (Navier-Stokes and Euler) and to point out several modelling, numerical and mathematical challenges that one still has to understand in order to describe correctly and efficiently such complex phenomena as wave breaking, overtopping, wave-structures interactions, etc.

I Derivation of several shallow water models

We will show how to derive several shallow water models (nonlinear shallow water equations, Boussinesq and Serre-Green-Naghdi systems) from the free surface Euler equations. We will consider first the case of an idealized configuration where no breaking waves are involved, where the water height does not vanish (no beach!), and where the flow is irrotational - this is the only configuration for which a rigorous justification of the asymptotic models can be justified.

II Brief analysis of these models.

We will briefly comment the mathematical structure of these equations, with a particular focus on the properties that are of interest for their numerical implementation. We will also discuss how these models behave in when the water height vanishes, since they are typically used in such configurations (see the lecture by P. Bonneton).

III Vorticity and turbulent effects.

We will propose a generalization of the derivation of the main shallow water models in the presence of vorticity, and show that the standard irrotational shallow water models must be coupled with an equation for a ”turbulent” tensor. We will also make the link with a modelling of wave breaking proposed by Gavrilyuk and Richard in which wave breaking is taken into account as a source term in this additional equation.

IV Floating objects.

This last section will be devoted to the description of a new approach to describe the interaction of waves in shallow water with floating objects, which leads to several interesting mathematical and numerical issues.
A good understanding of waves in shallow water, typically in coastal regions, is important for several environmental and societal issues: submersion risks, protection of harbors, erosion, offshore structures, wave energies, etc.

The goal of this serie of lectures is to show how efficient asymptotic models can be derived from the full fluid equations (Navier-Stokes and Euler) and to point out several modelling, numerical and mathematical ...

35Q86 ; 86A05 ; 35-XX

... Lire [+]

Déposez votre fichier ici pour le déplacer vers cet enregistrement.

Research schools

A good understanding of waves in shallow water, typically in coastal regions, is important for several environmental and societal issues: submersion risks, protection of harbors, erosion, offshore structures, wave energies, etc. The goal of this serie of lectures is to show how efficient asymptotic models can be derived from the full fluid equations (Navier-Stokes and Euler) and to point out several modelling, numerical and mathematical challenges that one still has to understand in order to describe correctly and efficiently such complex phenomena as wave breaking, overtopping, wave-structures interactions, etc.

I Derivation of several shallow water models

We will show how to derive several shallow water models (nonlinear shallow water equations, Boussinesq and Serre-Green-Naghdi systems) from the free surface Euler equations. We will consider first the case of an idealized configuration where no breaking waves are involved, where the water height does not vanish (no beach!), and where the flow is irrotational - this is the only configuration for which a rigorous justification of the asymptotic models can be justified.

II Brief analysis of these models.

We will briefly comment the mathematical structure of these equations, with a particular focus on the properties that are of interest for their numerical implementation. We will also discuss how these models behave in when the water height vanishes, since they are typically used in such configurations (see the lecture by P. Bonneton).

III Vorticity and turbulent effects

We will propose a generalization of the derivation of the main shallow water models in the presence of vorticity, and show that the standard irrotational shallow water models must be coupled with an equation for a ”turbulent” tensor. We will also make the link with a modelling of wave breaking proposed by Gavrilyuk and Richard in which wave breaking is taken into account as a source term in this additional equation.

IV Floating objects.

This last section will be devoted to the description of a new approach to describe the interaction of waves in shallow water with floating objects, which leads to several interesting mathematical and numerical issues.
A good understanding of waves in shallow water, typically in coastal regions, is important for several environmental and societal issues: submersion risks, protection of harbors, erosion, offshore structures, wave energies, etc. The goal of this serie of lectures is to show how efficient asymptotic models can be derived from the full fluid equations (Navier-Stokes and Euler) and to point out several modelling, numerical and mathematical ...

35Q86 ; 86A05 ; 35-XX

... Lire [+]

Déposez votre fichier ici pour le déplacer vers cet enregistrement.

Research schools

Earth’s atmosphere hosts a rich spectrum of phenomena that involve interactions of a variety of processes across many length and time scales. A systematic approach to analyzing these scale dependent processes is a core task of theoretical meteorology and a prerequi- site to constructing reliable computational models for weather forecasting and climate simulation.

Lecture I The fundamental tools of similarity theory and formal single scale asymptotics will allow us to systematize the large zoo of scale-dependent model equations that one finds in modern textbooks of theoretical meteorology.

Lecture II The meteorological analogue of the incompressible flow equations are the ”anelastic” and ”pseudo-incompressible” models. Here we will learn how the presence of internal gravity waves in the atmosphere implies an asymptotic three-scale problem that renders the formal derivation and justification of these models much more intricate than the classical low Mach number derivation of the incompressible flow equations.

Lecture III The mechanisms by which tropical storms develop into hurricanes and typhoons are still under intense debate despite decades of research. A recent theory for the dynamics of strongly tilted atmospheric vortices will show how asymptotic methods help structuring this scientific debate, and how they offer new angles of scientific attack on the problem.

Lecture * If time permits, I will also summarize some ramifications of the scaling regimes and scaling theories considered in Lectures I-III on the construction of reliable computational methods.
Earth’s atmosphere hosts a rich spectrum of phenomena that involve interactions of a variety of processes across many length and time scales. A systematic approach to analyzing these scale dependent processes is a core task of theoretical meteorology and a prerequi- site to constructing reliable computational models for weather forecasting and climate simulation.

Lecture I The fundamental tools of similarity theory and formal single scale ...

35Q86 ; 35Qxx ; 86A35

... Lire [+]

Déposez votre fichier ici pour le déplacer vers cet enregistrement.

Research schools

Earth’s atmosphere hosts a rich spectrum of phenomena that involve interactions of a variety of processes across many length and time scales. A systematic approach to analyzing these scale dependent processes is a core task of theoretical meteorology and a prerequi- site to constructing reliable computational models for weather forecasting and climate simulation.

Lecture I The fundamental tools of similarity theory and formal single scale asymptotics will allow us to systematize the large zoo of scale-dependent model equations that one finds in modern textbooks of theoretical meteorology.

Lecture II The meteorological analogue of the incompressible flow equations are the ”anelastic” and ”pseudo-incompressible” models. Here we will learn how the presence of internal gravity waves in the atmosphere implies an asymptotic three-scale problem that renders the formal derivation and justification of these models much more intricate than the classical low Mach number derivation of the incompressible flow equations.

Lecture III The mechanisms by which tropical storms develop into hurricanes and typhoons are still under intense debate despite decades of research. A recent theory for the dynamics of strongly tilted atmospheric vortices will show how asymptotic methods help structuring this scientific debate, and how they offer new angles of scientific attack on the problem.

Lecture * If time permits, I will also summarize some ramifications of the scaling regimes and scaling theories considered in Lectures I-III on the construction of reliable computational methods.
Earth’s atmosphere hosts a rich spectrum of phenomena that involve interactions of a variety of processes across many length and time scales. A systematic approach to analyzing these scale dependent processes is a core task of theoretical meteorology and a prerequi- site to constructing reliable computational models for weather forecasting and climate simulation.

Lecture I The fundamental tools of similarity theory and formal single scale ...

35Q86 ; 35Qxx ; 86A35

... Lire [+]

Déposez votre fichier ici pour le déplacer vers cet enregistrement.

Research schools

Earth’s atmosphere hosts a rich spectrum of phenomena that involve interactions of a variety of processes across many length and time scales. A systematic approach to analyzing these scale dependent processes is a core task of theoretical meteorology and a prerequi- site to constructing reliable computational models for weather forecasting and climate simulation.

Lecture I The fundamental tools of similarity theory and formal single scale asymptotics will allow us to systematize the large zoo of scale-dependent model equations that one finds in modern textbooks of theoretical meteorology.

Lecture II The meteorological analogue of the incompressible flow equations are the ”anelastic” and ”pseudo-incompressible” models. Here we will learn how the presence of internal gravity waves in the atmosphere implies an asymptotic three-scale problem that renders the formal derivation and justification of these models much more intricate than the classical low Mach number derivation of the incompressible flow equations.

Lecture III The mechanisms by which tropical storms develop into hurricanes and typhoons are still under intense debate despite decades of research. A recent theory for the dynamics of strongly tilted atmospheric vortices will show how asymptotic methods help structuring this scientific debate, and how they offer new angles of scientific attack on the problem.

Lecture * If time permits, I will also summarize some ramifications of the scaling regimes and scaling theories considered in Lectures I-III on the construction of reliable computational methods.
Earth’s atmosphere hosts a rich spectrum of phenomena that involve interactions of a variety of processes across many length and time scales. A systematic approach to analyzing these scale dependent processes is a core task of theoretical meteorology and a prerequi- site to constructing reliable computational models for weather forecasting and climate simulation.

Lecture I The fundamental tools of similarity theory and formal single scale ...

35Q86 ; 35Qxx ; 86A35

... Lire [+]

Déposez votre fichier ici pour le déplacer vers cet enregistrement.

Research schools

35Q86 ; 86Axx ; 65M08 ; 65Z05

... Lire [+]

Déposez votre fichier ici pour le déplacer vers cet enregistrement.

Research schools

35Q86 ; 86Axx ; 65M08 ; 65Z05

... Lire [+]

Déposez votre fichier ici pour le déplacer vers cet enregistrement.

Research schools

35Q86 ; 86Axx ; 65M08 ; 65Z05

... Lire [+]

Déposez votre fichier ici pour le déplacer vers cet enregistrement.

Research schools

86A05 ; 35Q86

... Lire [+]

Déposez votre fichier ici pour le déplacer vers cet enregistrement.

Research schools

86A05 ; 35Q86

... Lire [+]

Déposez votre fichier ici pour le déplacer vers cet enregistrement.

Research schools

86A05 ; 35Q86

... Lire [+]

Déposez votre fichier ici pour le déplacer vers cet enregistrement.

Research schools

86Axx ; 86A15 ; 86A17 ; 86A40 ; 86A60 ; 35Q86

... Lire [+]

Déposez votre fichier ici pour le déplacer vers cet enregistrement.

Research schools

86Axx ; 86A15 ; 86A17 ; 86A40 ; 86A60 ; 35Q86

... Lire [+]

Déposez votre fichier ici pour le déplacer vers cet enregistrement.

Research schools

86Axx ; 86A15 ; 86A17 ; 86A40 ; 86A60 ; 35Q86

... Lire [+]

Déposez votre fichier ici pour le déplacer vers cet enregistrement.

- xv; 237 p.
ISBN 978-1-107-18882-2

Encyclopedia of mathematics and its applications , 0168

Localisation : Collection 1er étage

analyse p-adique # analyse ultramétrique # équation différentielle stochastique

35-02 ; 35Sxx ; 35Q86

... Lire [+]

Déposez votre fichier ici pour le déplacer vers cet enregistrement.

- vi; 105 p.
ISBN 978-1-4704-2835-8

Memoirs of the American Mathematical Society , 1206

Localisation : Collection 1er étage

dégénérescence de la couche limite # dégénérescence géostrophique # couche limite de Munk # équation de Sverdrup # séparation de la couche limite

35J58 ; 35B25 ; 35B40 ; 35Q86

... Lire [+]

Z