m

F Nous contacter

0

Documents  Campana, Frédéric | enregistrements trouvés : 1

O
     

-A +A

P Q

Déposez votre fichier ici pour le déplacer vers cet enregistrement.

Research talks

For complex projective manifolds $X$ of general type, Lang claimed the equivalence between three fields: birational geometry, complex hyperbolicity, and arithmetic. We extend this equivalence to arbitrary $X$’s by introducing the (antithetical) class of “Special” manifolds and constructing the “Core” fibration, the unique one with special fibres and general type “orbifold” base. We conjecture that special manifolds —which are defined algebro-geometrically by a certain non-positivity of their cotangent bundles— are also exactly the ones having Zariski-dense entire curves (so violating the GGL property). We shall give (j.w. J. Winkelmann) some examples supporting this conjecture. The arithmetic aspect will be skipped. For complex projective manifolds $X$ of general type, Lang claimed the equivalence between three fields: birational geometry, complex hyperbolicity, and arithmetic. We extend this equivalence to arbitrary $X$’s by introducing the (antithetical) class of “Special” manifolds and constructing the “Core” fibration, the unique one with special fibres and general type “orbifold” base. We conjecture that special manifolds —which are defined al...

32E10 ; 32F45 ; 32J27 ; 55Q05 ; 14Exx ; 14Dxx

... Lire [+]

Z