m

F Nous contacter

0

Documents  Nualart, Eulalia | enregistrements trouvés : 1

O
     

-A +A

P Q

Déposez votre fichier ici pour le déplacer vers cet enregistrement.

Research talks;Partial Differential Equations;Probability and Statistics

Consider the following stochastic heat equation,
\[
\frac{\partial u_t(x)}{\partial t}=-\nu(-\Delta)^{\alpha/2} u_t(x)+\sigma(u_t(x))\dot{F}(t,\,x), \quad t>0, \; x \in \mathbb{R}^d.
\]
Here $-\nu(-\Delta)^{\alpha/2}$ is the fractional Laplacian with $\nu>0$ and $\alpha \in (0,2]$, $\sigma: \mathbb{R}\rightarrow \mathbb{R}$ is a globally Lipschitz function, and $\dot{F}(t,\,x)$ is a Gaussian noise which is white in time and colored in space. Under some suitable conditions, we will explore the effect of the initial data on the spatial asymptotic properties of the solution. We also prove a strong comparison principle thus filling an important gap in the literature.
Joint work with Mohammud Foondun (University of Strathclyde).
Consider the following stochastic heat equation,
\[
\frac{\partial u_t(x)}{\partial t}=-\nu(-\Delta)^{\alpha/2} u_t(x)+\sigma(u_t(x))\dot{F}(t,\,x), \quad t>0, \; x \in \mathbb{R}^d.
\]
Here $-\nu(-\Delta)^{\alpha/2}$ is the fractional Laplacian with $\nu>0$ and $\alpha \in (0,2]$, $\sigma: \mathbb{R}\rightarrow \mathbb{R}$ is a globally Lipschitz function, and $\dot{F}(t,\,x)$ is a Gaussian noise which is white in time and colored in space. ...

60H15 ; 60J55 ; 35R60

... Lire [+]

Z