m

F Nous contacter

0

Documents  Horbez, Camille | enregistrements trouvés : 2

O
     

-A +A

P Q

Déposez votre fichier ici pour le déplacer vers cet enregistrement.

Research talks;Geometry;Topology

Let $G$ be a torsion-free hyperbolic group, let $S$ be a finite generating set of $G$, and let $f$ be an automorphism of $G$. We want to understand the possible growth types for the word length of $f^n(g)$, where $g$ is an element of $G$. Growth was completely described by Thurston when $G$ is the fundamental group of a hyperbolic surface, and can be understood from Bestvina-Handel's work on train-tracks when $G$ is a free group. We address the general case of a torsion-free hyperbolic group $G$; we show that every element in $G$ has a well-defined exponential growth rate under iteration of $f$, and that only finitely many exponential growth rates arise as $g$ varies in $G$. In addition, we show the following dichotomy: every element of $G$ grows either exponentially fast or polynomially fast under iteration of $f$.
This is a joint work with Rémi Coulon, Arnaud Hilion and Gilbert Levitt.
Let $G$ be a torsion-free hyperbolic group, let $S$ be a finite generating set of $G$, and let $f$ be an automorphism of $G$. We want to understand the possible growth types for the word length of $f^n(g)$, where $g$ is an element of $G$. Growth was completely described by Thurston when $G$ is the fundamental group of a hyperbolic surface, and can be understood from Bestvina-Handel's work on train-tracks when $G$ is a free group. We address the ...

57M07 ; 20E06 ; 20F34 ; 20F65 ; 20E36 ; 20F67

... Lire [+]

Déposez votre fichier ici pour le déplacer vers cet enregistrement.

Research talks;Algebra

Given a nontrivial conjugacy class $g$ in a free group $F_{N}$, what can we say about the typical growth of g under application of a random product of auto-morphisms of $F_{N}$? I will present a law of large numbers, a central limit theorem and a spectral theorem in this context. Similar results also hold for the growth
of simple closed curves on a closed hyperbolic surface, under application of a random product of mapping classes of the surface. This is partly joint work with François Dahmani.
Given a nontrivial conjugacy class $g$ in a free group $F_{N}$, what can we say about the typical growth of g under application of a random product of auto-morphisms of $F_{N}$? I will present a law of large numbers, a central limit theorem and a spectral theorem in this context. Similar results also hold for the growth
of simple closed curves on a closed hyperbolic surface, under application of a random product of mapping classes of the ...

20F65

... Lire [+]

Z