m

F Nous contacter

0

Documents  Frantzikinakis, Nikos | enregistrements trouvés : 1

O
     

-A +A

P Q

Déposez votre fichier ici pour le déplacer vers cet enregistrement.

Research talks;Dynamical Systems and Ordinary Differential Equations;Number Theory

The Chowla conjecture asserts that the signs of the Liouville function are distributed randomly on the integers. Reinterpreted in the language of ergodic theory this conjecture asserts that the Liouville dynamical system is a Bernoulli system. We prove that ergodicity of the Liouville system implies the Chowla conjecture. Our argument has an ergodic flavor and combines recent results in analytic number theory, finitistic and infinitary decomposition results involving uniformity norms, and equidistribution results on nilmanifolds. The Chowla conjecture asserts that the signs of the Liouville function are distributed randomly on the integers. Reinterpreted in the language of ergodic theory this conjecture asserts that the Liouville dynamical system is a Bernoulli system. We prove that ergodicity of the Liouville system implies the Chowla conjecture. Our argument has an ergodic flavor and combines recent results in analytic number theory, finitistic and infinitary ...

11N60 ; 11B30 ; 11N37 ; 37A45

... Lire [+]

Z