m
• E

F Nous contacter

0

# Documents  Sageev, Michah | enregistrements trouvés : 8

O

P Q

Déposez votre fichier ici pour le déplacer vers cet enregistrement.

## The conjugacy problem for polynomially growing elements of $Out(F_{n})$ Feighn, Mark | CIRM H

Post-edited

Research talks;Algebra;Topology

(joint work with Michael Handel) $Out(F_{n}) := Aut(F_{n})/Inn(F_{n})$ denotes the outer automorphism group of the rank n free group $F_{n}$. An element $f$ of $Out(F_{n})$ is polynomially growing if the word lengths of conjugacy classes in Fn grow at most polynomially under iteration by $f$. The existence in $Out(F_{n}), n > 2$, of elements with non-linear polynomial growth is a feature of $Out(F_{n})$ not shared by mapping class groups of surfaces.
To avoid some finite order behavior, we restrict attention to the subset $UPG(F_{n})$ of $Out(F_{n})$ consisting of polynomially growing elements whose action on $H_{1}(F_{n}, Z)$ is unipotent. In particular, if $f$ is polynomially growing and acts trivially on $H_{1}(F_{n}, Z_{3})$ then $f$ is in $UPG(F_{n})$ and further every polynomially growing element of $Out(F_{n})$ has a power that is in $UPG(F_{n})$. The goal of the talk is to describe an algorithm to decide given $f,g$ in $UPG(F_{n})$ whether or not there is h in $Out(F_{n})$ such that $hf h^{-1} = g$.
The conjugacy problem for linearly growing elements of $UPG(F_{n})$ was solved by Cohen-Lustig. Krstic-Lustig-Vogtmann solved the case of linearly growing elements of $Out(F_{n})$.
A key technique is our use of train track representatives for elements of $Out(F_{n})$, a method pioneered by Bestvina-Handel in the early 1990s that has since been ubiquitous in the study of $Out(F_{n})$.
(joint work with Michael Handel) $Out(F_{n}) := Aut(F_{n})/Inn(F_{n})$ denotes the outer automorphism group of the rank n free group $F_{n}$. An element $f$ of $Out(F_{n})$ is polynomially growing if the word lengths of conjugacy classes in Fn grow at most polynomially under iteration by $f$. The existence in $Out(F_{n}), n > 2$, of elements with non-linear polynomial growth is a feature of $Out(F_{n})$ not shared by mapping class groups of ...

Déposez votre fichier ici pour le déplacer vers cet enregistrement.

## Geometry, spectral theory, groups, and dynamics :Proceedings in memory of Robert Brooks#Dec. 29 - Jan. 2 and Jan. 5-9 Entov, Michael ; Pinchover, Yehuda ; Sageev, Michah | American Mathematical Society 2005

Congrès

- 275 p.
ISBN 978-0-8218-3710-8

Contemporary mathematics , 0387

Localisation : Collection 1er étage

géométrie # théorie spectrale # théorie des groupes # dynamique # surface de Riemann # géométrie de Riemann # géométrie discrète # théorie des nombres # théorème de Szegös # inégalité isopérimétrique # symétrie des variétés

Déposez votre fichier ici pour le déplacer vers cet enregistrement.

## Counting curves of given type, revisited Souto, Juan | CIRM H

Multi angle

Research talks;Geometry;Topology

Mirzakhani wrote two papers studying the asymptotic behaviour of the number of curves of a given type (simple or not) and with length at most $L$. In this talk I will explain a new independent proof of Mirzakhani’s results.
This is joint work with Viveka Erlandsson.

Déposez votre fichier ici pour le déplacer vers cet enregistrement.

## Torsion groups do not act on 2-dimensional CAT(0) complexes Przytycki, Piotr | CIRM H

Multi angle

Research talks;Geometry

We show, under mild hypotheses, that if each element of a finitely generated group acting on a 2-dimensional CAT(0) complex has a fixed point, then the action is trivial. In particular, all actions of finitely generated torsion groups on such complexes are trivial. As an ingredient, we prove that the image of an immersed loop in a graph of girth 2π with length not commensurable to π has diameter > π. This is related to a theorem of Dehn on tiling rectangles by squares.
This is joint work with Sergey Norin and Damian Osajda.
We show, under mild hypotheses, that if each element of a finitely generated group acting on a 2-dimensional CAT(0) complex has a fixed point, then the action is trivial. In particular, all actions of finitely generated torsion groups on such complexes are trivial. As an ingredient, we prove that the image of an immersed loop in a graph of girth 2π with length not commensurable to π has diameter > π. This is related to a theorem of Dehn on ...

20F65

Déposez votre fichier ici pour le déplacer vers cet enregistrement.

## Artin groups and mapping class groups Hamenstädt, Ursula | CIRM H

Multi angle

Research talks;Geometry;Topology

Using a very recent result of Calderon and Salter, we relate small type Artin groups defined by Coxeter diagram which are trees to mapping class groups. This gives information on both the Artin groups with respect to commensurability and hyperbolicity of the parabolic subgroup graph as well as information on the mapping class group and its associated geometric spaces, namely generating sets of finite index subgroups and fundamental groups of strata of abelian differentials. I’ll try to highlight the many ways in which this reflects various aspects of Mladen’s work. Using a very recent result of Calderon and Salter, we relate small type Artin groups defined by Coxeter diagram which are trees to mapping class groups. This gives information on both the Artin groups with respect to commensurability and hyperbolicity of the parabolic subgroup graph as well as information on the mapping class group and its associated geometric spaces, namely generating sets of finite index subgroups and fundamental groups of ...

Déposez votre fichier ici pour le déplacer vers cet enregistrement.

## Conformal dimension and free by cyclic groups Algom-Kfir, Yael | CIRM H

Multi angle

Research talks;Geometry;Topology

Let $G$ be a hyperbolic group. Its boundary is a topological invariant within the quasi-isometry class of $G$ but it is far from being a complete invariant, e.g. a random group at density ¡1/2 is hyperbolic (Gromov) and its boundary is homeomorphic to the Menger curve (Dahmani-Guirardel-Przytycki) but Mackay proved that there are infinitely many quasi-isometry classes of random groups at density d for small enough d.
We discuss the conformal dimension of a hyperbolic group, a quasi-isometry invariant introduced by Pansu. Paulin proved that this is a complete $QI$ invariant of the group. We discuss a technique of Pansu and Bourdon for bounding the conformal dimension from below. We then relate this technique to the family of hyperbolic free by cyclic groups. This is work in progress towards the ultimate goal of showing that there are infinitely many $QI$ classes of free by cyclic groups.
This is joint work with Bestvina, Hilion and Stark
Let $G$ be a hyperbolic group. Its boundary is a topological invariant within the quasi-isometry class of $G$ but it is far from being a complete invariant, e.g. a random group at density ¡1/2 is hyperbolic (Gromov) and its boundary is homeomorphic to the Menger curve (Dahmani-Guirardel-Przytycki) but Mackay proved that there are infinitely many quasi-isometry classes of random groups at density d for small enough d.
We discuss the conformal ...

Déposez votre fichier ici pour le déplacer vers cet enregistrement.

## Quasi-actions on trees II: finite depth Bass-Serre trees Mosher, Lee ; Sageev, Michah ; Whyte, Kevin | American Mathematical Society 2011

Ouvrage

- v; 105 p.
ISBN 978-0-8218-4712-1

Memoirs of the american mathematical society , 1008

Localisation : Collection 1er étage

théorie géométrique des groupes # rigidité quasi-isométrique # arbres de Bass-Serre # groupe de dualité de Poincaré # groupe de type fini

20F65

Déposez votre fichier ici pour le déplacer vers cet enregistrement.

## Geometric group theory.Lecture notes from the IAS/Park city mathematics institute graduate summer schoolPrinceton # july 1-21, 2012 Bestvina, Mladen ; Sageev, Michah ; Vogtmann, Karen | American Mathematical Society;Institute for Advanced Study 2014

Ouvrage

- xiv; 399 p.
ISBN 978-1-4704-1227-2

IAS/Park City mathematics series , 0021

Localisation : Collection 1er étage

théorie géométrique des groupes # groupe discret # complexe cubique CAT(0) # groupe CAT(0) # rigidité quasi-isométrique # géométrie dans l'espace # espace localement symétrique # groupe approximatif

#### Filtrer

##### Codes MSC

Titres de périodiques et e-books électroniques (Depuis le CIRM)

Ressources Electroniques

Books & Print journals

Recherche avancée

0
Z