m

F Nous contacter

0

Documents  Bouc, Serge | enregistrements trouvés : 3

O
     

-A +A

P Q

Déposez votre fichier ici pour le déplacer vers cet enregistrement.

Research talks;Algebraic and Complex Geometry

In this joint work with Jacques Thévenaz, we develop the representation theory of finite sets and correspondences : let kC the category of finite sets, in which morphisms are k-linear combinations of correspondences (where k is a given commutative ring), and let Fk be the category of correspondence functors (over k), i.e. the category of k-linear functors from kC to k-modules. This category Fk is an abelian k-linear category. In such a framework, it is of crucial importance to describe the algebra of essential endomorphisms of a given object. This is what we achieved in a previous work on the algebra of essential relations on a finite set, describing in particular its simple modules. This description leads to a parametrization of the simple functors on kC by triples (E;R;V) consisting of a finite set E, a partial order relation R on E, and a simple k-linear representation V of the automorphism group of (E;R). In this joint work with Jacques Thévenaz, we develop the representation theory of finite sets and correspondences : let kC the category of finite sets, in which morphisms are k-linear combinations of correspondences (where k is a given commutative ring), and let Fk be the category of correspondence functors (over k), i.e. the category of k-linear functors from kC to k-modules. This category Fk is an abelian k-linear category. In such a ...

... Lire [+]

Déposez votre fichier ici pour le déplacer vers cet enregistrement.


ISBN 978-0-8218-1951-7

Memoirs of the american mathematical society , 0683

Localisation : Collection 1er étage

foncteur de Green # foncteur de MacKey # induction # théorie d homologie # théorie des fonctions

18A22 ; 19A22

... Lire [+]

Déposez votre fichier ici pour le déplacer vers cet enregistrement.

- ix, 299 p.
ISBN 978-3-642-11296-6

Lecture notes in mathematics , 1990

Localisation : Collection 1er étage

theorie des groupes # foncteur de Biset # groupe fini

20J15 ; 19A22 ; 20C15 ; 20G05

... Lire [+]

Z