m

Documents  Sibony, Nessim | enregistrements trouvés : 3

O
     

-A +A

P Q

Déposez votre fichier ici pour le déplacer vers cet enregistrement.

How to study the dynamics of a holomorphic polynomial vector field in $\mathbb{C}^{2}$? What is the replacement of invariant measure? I will survey some surprising rigidity results concerning the behavior of these dynamical system. It is helpful to consider the extension of this dynamical system to the projective plane.
Consider a foliation in the projective plane admitting a unique invariant algebraic curve. Assume that the foliation is generic in the sense that its singular points are hyperbolic. With T.-C. Dinh, we showed that there is a unique positive $dd^{c}$-closed (1, 1)-current of mass 1 which is directed by the foliation. This is the current of integration on the invariant curve. A unique ergodicity theorem for the distribution of leaves follows: for any leaf $L$, appropriate averages on $L$ converge to the current of integration on the invariant curve (although generically the leaves are dense). The result uses our theory of densities for currents. It extends to Foliations on Kähler surfaces.
I will describe a recent result, with T.-C. Dinh and V.-A. Nguyen, dealing with foliations on compact Kähler surfaces. If the foliation, has only hyperbolic singularities and does not admit a transverse measure, in particular no invariant compact curve, then there exists a unique positive $dd^{c}$-closed (1, 1)-current of mass 1 which is directed by the foliation( it’s like uniqueness of invariant measure for discrete dynamical systems). This improves on previous results, with J.-E. Fornæss, for foliations (without invariant algebraic curves) on the projective plane. The proof uses a theory of densities for positive $dd^{c}$-closed currents (an intersection theory).
How to study the dynamics of a holomorphic polynomial vector field in $\mathbb{C}^{2}$? What is the replacement of invariant measure? I will survey some surprising rigidity results concerning the behavior of these dynamical system. It is helpful to consider the extension of this dynamical system to the projective plane.
Consider a foliation in the projective plane admitting a unique invariant algebraic curve. Assume that the foliation is ...

37F75 ; 37Axx

... Lire [+]

Déposez votre fichier ici pour le déplacer vers cet enregistrement.

- 197 p.
ISBN 978-0-8218-3228-8

SMF/AMS texts and monographs , 0010

Localisation : Collection 1er étage

espace de module # fonction théta # théorème de Riemann-Roch # tore complexe # variété abellienne

30D05 ; 57R30 ; 37-06 ; 32H50 ; 37FXX

... Lire [+]

Déposez votre fichier ici pour le déplacer vers cet enregistrement.


ISBN 978-2-85629-078-1

Panoramas et synthèses , 0008

Localisation : Collection 1er étage

dynamique de dimension 1 # dynamique holomorphe # feuilletage # singularité de champs de vecteur # équation différentielle ordinaire dans le domaine complexe

30D03 ; 30D05 ; 34A20 ; 57R30 ; 58F03 ; 58F15 ; 58F18 ; 58F23

... Lire [+]

Z