m
• E

F Nous contacter

0

# Documents  52C40 | enregistrements trouvés : 5

O

P Q

Déposez votre fichier ici pour le déplacer vers cet enregistrement.

## The concatenation operation for uniform oriented matroids and simplicial (or simple) polytopes Lawrence, Jim | CIRM H

Multi angle

Research talks;Combinatorics;Geometry

Some problems connected with the concatenation operation will be described.

Déposez votre fichier ici pour le déplacer vers cet enregistrement.

## Tverberg-type theorems with altered nerves De Loera, Jesus A. | CIRM H

Multi angle

Research talks;Combinatorics;Geometry

The classical Tverberg's theorem says that a set with sufficiently many points in $R^d$ can always be partitioned into m parts so that the (m - 1)-simplex is the (nerve) intersection pattern of the convex hulls of the parts. Our main results demonstrate that Tverberg's theorem is but a special case of a much more general situation. Given sufficiently many points, any tree or cycle, can also be induced by at least one partition of the point set. The proofs require a deep investigation of oriented matroids and order types.
(Joint work with Deborah Oliveros, Tommy Hogan, Dominic Yang (supported by NSF).)
The classical Tverberg's theorem says that a set with sufficiently many points in $R^d$ can always be partitioned into m parts so that the (m - 1)-simplex is the (nerve) intersection pattern of the convex hulls of the parts. Our main results demonstrate that Tverberg's theorem is but a special case of a much more general situation. Given sufficiently many points, any tree or cycle, can also be induced by at least one partition of the point set. ...

Déposez votre fichier ici pour le déplacer vers cet enregistrement.

## How many cubes are orientable? Da Silva, Ilda P. F. | CIRM H

Multi angle

Research talks;Combinatorics;Geometry

A cube is a matroid over $C^n=\{-1,+1\}^n$ that contains as circuits the usual rectangles of the real affine cube packed in such a way that the usual facets and skew-facets are hyperplanes of the matroid.
How many cubes are orientable? So far, only one: the oriented real affine cube. We review the results obtained so far concerning this question. They follow two directions:
1) Identification of general obstructions to orientability in this class. (da Silva, EJC 30 (8), 2009, 1825-1832).
2) (work in collaboration with E. Gioan) Identification of algebraic and geometric properties of recursive families of non-negative integer vectors defining hyperplanes of the real affine cube and the analysis of this question and of las Vergnas cube conjecture in small dimensions.
A cube is a matroid over $C^n=\{-1,+1\}^n$ that contains as circuits the usual rectangles of the real affine cube packed in such a way that the usual facets and skew-facets are hyperplanes of the matroid.
How many cubes are orientable? So far, only one: the oriented real affine cube. We review the results obtained so far concerning this question. They follow two directions:
1) Identification of general obstructions to orientability in this ...

Déposez votre fichier ici pour le déplacer vers cet enregistrement.

## Triangulations of oriented matroids Santos, Francisco | American Mathematical Society 2002

Ouvrage

- 80 p.
ISBN 978-0-8218-2769-7

Memoirs of the american mathematical society , 0741

Localisation : Collection 1er étage

géométrie discrète # matroïde orienté # triangulation # polytope # convexité combinatoriale # polytope de Lawrence

Déposez votre fichier ici pour le déplacer vers cet enregistrement.

## Computational oriented matroids:equivalence classes of matrices within a natural framework Bokowski, Jürgen G. | Cambridge University Press 2006

Ouvrage

- xiii; 323 p.
ISBN 978-0-521-84930-2

Localisation : Ouvrage RdC (BOKO)

matroïde orientée # langage de programmation de Haskell # configuration hyper-plan # arrengement en pseudo-ligne # polytope convexe # sphère triangulée

#### Filtrer

##### Codes MSC

Titres de périodiques et e-books électroniques (Depuis le CIRM)

Ressources Electroniques

Books & Print journals

Recherche avancée

0
Z