m

F Nous contacter

0

Documents  Woodin, W. Hugh | enregistrements trouvés : 9

O
     

-A +A

P Q

Déposez votre fichier ici pour le déplacer vers cet enregistrement.

Research talks;Logic and Foundations

It is well-known that the statement "all $\aleph_1$-Aronszajn trees are special'' is consistent with ZFC (Baumgartner, Malitz, and Reinhardt), and even with ZFC+GCH (Jensen). In contrast, Ben-David and Shelah proved that, assuming GCH, for every singular cardinal $\lambda$: if there exists a $\lambda^+$-Aronszajn tree, then there exists a non-special one. Furthermore:
Theorem (Ben-David and Shelah, 1986) Assume GCH and that $\lambda$ is singular cardinal. If there exists a special $\lambda^+$-Aronszajn tree, then there exists a $\lambda$-distributive $\lambda^+$-Aronszajn tree.
This suggests that following stronger statement:
Conjecture. Assume GCH and that $\lambda$ is singular cardinal.
If there exists a $\lambda^+$-Aronszajn tree,
then there exists a $\lambda$-distributive $\lambda^+$-Aronszajn tree.

The assumption that there exists a $\lambda^+$-Aronszajn tree is a very mild square-like hypothesis (that is, $\square(\lambda^+,\lambda)$).
In order to bloom a $\lambda$-distributive tree from it, there is a need for a toolbox, each tool taking an abstract square-like sequence and producing a sequence which is slightly better than the original one.
For this, we introduce the monoid of postprocessing functions and study how it acts on the class of abstract square sequences.
We establish that, assuming GCH, the monoid contains some very powerful functions. We also prove that the monoid is closed under various mixing operations.
This allows us to prove a theorem which is just one step away from verifying the conjecture:

Theorem 1. Assume GCH and that $\lambda$ is a singular cardinal.
If $\square(\lambda^+,<\lambda)$ holds, then there exists a $\lambda$-distributive $\lambda^+$-Aronszajn tree.
Another proof, involving a 5-steps chain of applications of postprocessing functions, is of the following theorem.

Theorem 2. Assume GCH. If $\lambda$ is a singular cardinal and $\square(\lambda^+)$ holds, then there exists a $\lambda^+$-Souslin tree which is coherent mod finite.

This is joint work with Ari Brodsky. See: http://assafrinot.com/paper/29
It is well-known that the statement "all $\aleph_1$-Aronszajn trees are special'' is consistent with ZFC (Baumgartner, Malitz, and Reinhardt), and even with ZFC+GCH (Jensen). In contrast, Ben-David and Shelah proved that, assuming GCH, for every singular cardinal $\lambda$: if there exists a $\lambda^+$-Aronszajn tree, then there exists a non-special one. Furthermore:
Theorem (Ben-David and Shelah, 1986) Assume GCH and that $\lambda$ is singular ...

03E05 ; 03E65 ; 03E35 ; 05C05

... Lire [+]

Déposez votre fichier ici pour le déplacer vers cet enregistrement.

- ix; 174 p.
ISBN 978-981-4699-94-5

Lecture notes series, Institute for mathematical sciences, National university of Singapore , 0029

Localisation : Colloque 1er étage (SING)

théorie des modèles # non-résolubilité # logique mathématique # forcing

03-06 ; 03E40 ; 03C20 ; 03D28 ; 00B25

... Lire [+]

Déposez votre fichier ici pour le déplacer vers cet enregistrement.

- xiii; 311 p.
ISBN 978-1-107-00387-3

Localisation : Colloque 1er étage (SAN)

infini # phylosophie # histoire des mathématiques # cosmologie

00B15 ; 00A30 ; 03A05 ; 85A40

... Lire [+]

Déposez votre fichier ici pour le déplacer vers cet enregistrement.

Research talks;Logic and Foundations

We will analyze consequences of various types of Prikry forcing on combinatorial properties at singular cardinals and their successors, focusing on weak square and simultaneous stationary reflection. The motivation is how much compactness type properties can be obtained at successors of singulars, and especially the combinatorics at $\aleph_{\omega+1}$.

03E04 ; 03E35 ; 03E55

... Lire [+]

Déposez votre fichier ici pour le déplacer vers cet enregistrement.

Research talks;Combinatorics;Logic and Foundations

N. Hindman, I. Leader and D. Strauss proved that if $2^{\aleph_0}<\aleph_\omega$ then there is a finite colouring of $\mathbb{R}$ so that no infinite sumset $X+X$ is monochromatic. Now, we prove a consistency result in the other direction: we show that consistently relative to a measurable cardinal for any $c:\mathbb{R}\to r$ with $r$ finite there is an infinite $X\subseteq \mathbb{R}$ so that $c\upharpoonright X+X$ is constant. The goal of this presentation is to discuss the motivation, ideas and difficulties involving this result, as well as the open problems around the topic. Joint work with P. Komjáth, I. Leader, P. Russell, S. Shelah and Z. Vidnyánszky. N. Hindman, I. Leader and D. Strauss proved that if $2^{\aleph_0}<\aleph_\omega$ then there is a finite colouring of $\mathbb{R}$ so that no infinite sumset $X+X$ is monochromatic. Now, we prove a consistency result in the other direction: we show that consistently relative to a measurable cardinal for any $c:\mathbb{R}\to r$ with $r$ finite there is an infinite $X\subseteq \mathbb{R}$ so that $c\upharpoonright X+X$ is constant. The goal of this ...

03E02 ; 03E35 ; 05D10

... Lire [+]

Déposez votre fichier ici pour le déplacer vers cet enregistrement.

Research talks;Logic and Foundations

Recent work has clarified how various natural second-order set-theoretic principles, such as those concerned with class forcing or with proper class games, fit into a new robust hierarchy of second-order set theories between Gödel-Bernays GBC set theory and Kelley-Morse KM set theory and beyond. For example, the principle of clopen determinacy for proper class games is exactly equivalent to the principle of elementary transfinite recursion ETR, strictly between GBC and GBC+$\Pi^1_1$-comprehension; open determinacy for class games, in contrast, is strictly stronger; meanwhile, the class forcing theorem, asserting that every class forcing notion admits corresponding forcing relations, is strictly weaker, and is exactly equivalent to the fragment $\text{ETR}_{\text{Ord}}$ and to numerous other natural principles. What is emerging is a higher set-theoretic analogue of the familiar reverse mathematics of second-order number theory. Recent work has clarified how various natural second-order set-theoretic principles, such as those concerned with class forcing or with proper class games, fit into a new robust hierarchy of second-order set theories between Gödel-Bernays GBC set theory and Kelley-Morse KM set theory and beyond. For example, the principle of clopen determinacy for proper class games is exactly equivalent to the principle of elementary transfinite recursion ETR, ...

03E60 ; 03E30 ; 03C62

... Lire [+]

Déposez votre fichier ici pour le déplacer vers cet enregistrement.

Research talks;Logic and Foundations

We discuss classical realizability, a branch of mathematical logic that investigates the computational content of mathematical proofs by establishing a correspondence between proofs and programs. Research in this field has led to the development of highly technical constructions generalizing the method of forcing in set theory. In particular, models of realizability are models of ZF, and forcing models are special cases of realizability models.

03E70 ; 03F50 ; 03F55

... Lire [+]

Déposez votre fichier ici pour le déplacer vers cet enregistrement.

- 132 p.
ISBN 978-0-8218-3604-0

University lecture series , 0032

Localisation : Collection 1er étage

théorie des ensembles # théorie descriptive des ensembles # tour stationnaire # grand cardinal # théorème de Woodin # forcing # plongement

03E40 ; 03E15 ; 03E35 ; 03E55 ; 03E60

... Lire [+]

Déposez votre fichier ici pour le déplacer vers cet enregistrement.

- 357 p.
ISBN 978-0-19-853991-9

London mathematical society monographs new series , 0014

Localisation : Ouvrage RdC (DALE)

algèbre de fonction continue # calcul opérationnel # complétion # corps rigide # corps super-réel # corps totalement ordonné # ensemble ordonnée # groupe ordonné # modèle et complétude de Cauchy faible # normalité et universalité # structure additionnelle # structure non- standard # structure solide # théorème lacunaire

06Fxx ; 12J15

... Lire [+]

Z