m

F Nous contacter

0

Documents  14N30 | enregistrements trouvés : 2

O
     

-A +A

P Q

Déposez votre fichier ici pour le déplacer vers cet enregistrement.

Research talks

An lc-trivial fibration $f : (X, B) \to Y$ is a fibration such that the log-canonical divisor of the pair $(X, B)$ is trivial along the fibres of $f$. As in the case of the canonical bundle formula for elliptic fibrations, the log-canonical divisor can be written as the sum of the pullback of three divisors: the canonical divisor of $Y$; a divisor, called discriminant, which contains informations on the singular fibres; a divisor, called moduli part, that contains informations on the variation in moduli of the fibres. The moduli part is conjectured to be semiample. Ambro proved the conjecture when the base $Y$ is a curve. In this talk we will explain how to prove that the restriction of the moduli part to a hypersurface is semiample assuming the conjecture in lower dimension. This is a joint work with Vladimir Lazić. An lc-trivial fibration $f : (X, B) \to Y$ is a fibration such that the log-canonical divisor of the pair $(X, B)$ is trivial along the fibres of $f$. As in the case of the canonical bundle formula for elliptic fibrations, the log-canonical divisor can be written as the sum of the pullback of three divisors: the canonical divisor of $Y$; a divisor, called discriminant, which contains informations on the singular fibres; a divisor, called moduli ...

14J10 ; 14E30 ; 14N30

... Lire [+]

Déposez votre fichier ici pour le déplacer vers cet enregistrement.

- 643 p.
ISBN 978-0-8176-4471-0

Progress in mathematics , 0253

Localisation : Collection 1er étage

géométrie algébrique # théorie des nombres # Vladimir Drinfeld # programme de Langlands # théorie des groupes quantiques

03C60 ; 11F67 ; 11M41 ; 11R42 ; 11S20 ; 11S80 ; 14C99 ; 14D20 ; 14G20 ; 14H70 ; 14N10 ; 14N30 ; 17B67 ; 20G42 ; 22E46

... Lire [+]

Z