m

F Nous contacter

0

Documents  65F08 | enregistrements trouvés : 6

O
     

-A +A

P Q

Déposez votre fichier ici pour le déplacer vers cet enregistrement.

Research talks

This talk focuses on challenges that we address when designing linear solvers that aim at achieving scalability on large scale computers, while also preserving numerical robustness. We will consider preconditioned Krylov subspace solvers. Getting scalability relies on reducing global synchronizations between processors, while also increasing the arithmetic intensity on one processor. Achieving robustness relies on ensuring that the condition number of the preconditioned matrix is bounded. We will discuss two different approaches for this. The first approach relies on enlarged Krylov subspace methods that aim at computing an enlarged subspace and obtain a faster convergence of the iterative method. The second approach relies on a multilevel Schwarz preconditioner, a multilevel extension of the GenEO preconditioner, that is basedon constructing robustly a hierarchy of coarse spaces. Numerical results on large scale computers, in particular for linear systems arising from solving linear elasticity problems, will discuss the efficiency of the proposed methods. This talk focuses on challenges that we address when designing linear solvers that aim at achieving scalability on large scale computers, while also preserving numerical robustness. We will consider preconditioned Krylov subspace solvers. Getting scalability relies on reducing global synchronizations between processors, while also increasing the arithmetic intensity on one processor. Achieving robustness relies on ensuring that the condition ...

65F08 ; 65F10 ; 65N55

... Lire [+]

Déposez votre fichier ici pour le déplacer vers cet enregistrement.

Research talks

I will present an efficient implementation of the highly robust and scalable GenEO preconditioner in the high-performance PDE framework DUNE. The GenEO coarse space is constructed by combining low energy solutions of local generalised eigenproblems using a partition of unity. In this talk, both weak and strong scaling for the GenEO solver on over 15,000 cores will be demonstrated by solving an industrially motivated problem with over 200 million degrees of freedom in aerospace composites modelling. Further, it will be shown that for highly complex parameter distributions in certain real-world applications, established methods can become intractable while GenEO remains fully effective. In the context of multilevel Markov chain Monte Carlo (MLMCMC), the GenEO coarse space also plays an important role as an effective surrogate model in PDE-constrained Bayesian inference. The second part will therefore focus on the approximation properties of the GenEO coarse space and on a high-performance parallel implementation of MLMCMC.
This is joint work with Tim Dodwell (Exeter), Anne Reinarz (TU Munich) and Linus Seelinger (Heidelberg).
I will present an efficient implementation of the highly robust and scalable GenEO preconditioner in the high-performance PDE framework DUNE. The GenEO coarse space is constructed by combining low energy solutions of local generalised eigenproblems using a partition of unity. In this talk, both weak and strong scaling for the GenEO solver on over 15,000 cores will be demonstrated by solving an industrially motivated problem with over 200 million ...

65F08 ; 65N22 ; 65N30 ; 65N55

... Lire [+]

Déposez votre fichier ici pour le déplacer vers cet enregistrement.

Research talks

We present a novel approach to the solution of time-dependent PDEs via the so-called monolithic or all-at-once formulation. This approach will be explained for simple parabolic problems and its utility in the context of PDE constrained optimization problems will be elucidated.
The underlying linear algebra includes circulant matrix approximations of Toeplitz-structured matrices and allows for effective parallel implementation. Simple computational results will be shown for the heat equation and the wave equation which indicate the potential as a parallel-in-time method.
This is joint work with Elle McDonald (CSIRO, Australia), Jennifer Pestana (Strathclyde University, UK) and Anthony Goddard (Durham University, UK)
We present a novel approach to the solution of time-dependent PDEs via the so-called monolithic or all-at-once formulation. This approach will be explained for simple parabolic problems and its utility in the context of PDE constrained optimization problems will be elucidated.
The underlying linear algebra includes circulant matrix approximations of Toeplitz-structured matrices and allows for effective parallel implementation. Simple co...

65F08 ; 15B05 ; 65M22

... Lire [+]

Déposez votre fichier ici pour le déplacer vers cet enregistrement.

Research schools;Computer Science

65F08 ; 65F10 ; 65Y05 ; 68W10

... Lire [+]

Déposez votre fichier ici pour le déplacer vers cet enregistrement.

- xiv; 312 p.
ISBN 978-3-642-44438-8

Lecture notes in computational science and engineering , 0090

Localisation : Ouvrage RdC (PECH)

décomposition de domaines # couplage FEM/BEM # rupture et interconnexion # préconditionnement # nombre de condition # préconditionnement de FETI # préconditionnement de BETI # préconditionnement dual/primal # problème extérieur # EDP multi-échelles # élément fini # élément aux limites # équation différentielle partielle elliptique de second ordre # solveur itératif # équation à grande échelle # parallélisation # algorithme # convergence # test numérique # multiplicateur Lagrangien # domaine non borné # équation de diffusion décomposition de domaines # couplage FEM/BEM # rupture et interconnexion # préconditionnement # nombre de condition # préconditionnement de FETI # préconditionnement de BETI # préconditionnement dual/primal # problème extérieur # EDP multi-échelles # élément fini # élément aux limites # équation différentielle partielle elliptique de second ordre # solveur itératif # équation à grande échelle # parallélisation # algorithme # convergence # test ...

65N55 ; 65F08 ; 65N22 ; 65N30 ; 65N38 ; 65Y05 ; 35J25 ; 65-02

... Lire [+]

Déposez votre fichier ici pour le déplacer vers cet enregistrement.

- ix; 104 p.
ISBN 978-1-611973-83-9

SIAM spotlights

Localisation : Ouvrage RdC (MALE)

équation aux dérivées partielles # méthode du gradient conjugué # problème aux limites

65-02 ; 65J10 ; 65N22 ; 35J30 ; 65F08 ; 65F10

... Lire [+]

Z