m

F Nous contacter

0

Documents  Williams, Lauren | enregistrements trouvés : 1

O
     

-A +A

P Q

Déposez votre fichier ici pour le déplacer vers cet enregistrement.

Research talks;Combinatorics;Algebraic and Complex Geometry

In joint work with Konstanze Rietsch (arXiv:1712.00447), we use the $\mathcal{X}$-cluster structure on the Grassmannian and the combinatorics of plabic graphs to associate a Newton-Okounkov body to each $\mathcal{X}$-cluster. This gives, for each $\mathcal{X}$-cluster, a toric degeneration of the Grassmannian. We also describe the Newton-Okounkov bodies quite explicitly: we show that their facets can be read off from $\mathcal{A}$-cluster expansions of the superpotential. And we give a combinatorial formula for the lattice points of the Newton-Okounkov bodies, which has a surprising interpretation in terms of quantum Schubert calculus. In joint work with Konstanze Rietsch (arXiv:1712.00447), we use the $\mathcal{X}$-cluster structure on the Grassmannian and the combinatorics of plabic graphs to associate a Newton-Okounkov body to each $\mathcal{X}$-cluster. This gives, for each $\mathcal{X}$-cluster, a toric degeneration of the Grassmannian. We also describe the Newton-Okounkov bodies quite explicitly: we show that their facets can be read off from $\mathcal{A}$-cluster ...

05E10 ; 14M15 ; 14M25 ; 14M27

... Lire [+]

Z